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Abstract 
 

The GridFTP extensions to the File Transfer 

Protocol define a general-purpose mechanism for 

secure, reliable, high-performance data movement. We 

report here on the Globus striped GridFTP framework, 

a set of client and server libraries designed to support 

the construction of data-intensive tools and 

applications. We describe the design of both this 

framework and a striped GridFTP server constructed 

within the framework. We show that this server is 

faster than other FTP servers in both single-process 

and striped configurations, achieving, for example, 

speeds of 27.3 Gbit/s memory-to-memory and 17 Gbit/s 

disk-to-disk over a 60 millisecond round trip time, 30 

Gbit/s network.  In another experiment, we show that 

the server can support 1800 concurrent clients without 

excessive load. We argue that this combination of 

performance and modular structure make the Globus 

GridFTP framework both a good foundation on which 

to build tools and applications, and a unique testbed 

for the study of innovative data management 

techniques and network protocols. 

 

1 Introduction 

Rapid increases in both the quantity and diversity of 

data stored on secondary and tertiary storage systems, 

and in the raw capacity of wide area networks, make it 

both desirable and feasible, in principle at least, to 

move large amounts of data across wide area networks. 

For example, the NSF TeraGrid network links large 

clusters and storage systems at nine sites with a 

network providing up to 30 Gbit/s end-to-end. In 

principle, we should be able to move data across this 

network at more than 3 Gbyte/s, or 10 Tbyte/hr. 

In practice, the orchestration of such transfers is 

technically challenging. One key issue is the frequent 

need to exploit parallelism in multiple dimensions, 

including (depending on context) storage systems, 

network interfaces, and backbone network trunks. 

Another is dealing with failures of various sorts. 

Firewalls, parallel file systems, and other specialized 

devices can also cause difficulties, as can the need to 

transform data before and/or after transfer. For these 

and other reasons, rapid, efficient, and robust wide area 

end-to-end transport requires the management of 

complex systems at multiple levels. For example, in 

recent work, we required 32 hosts connected at 1 

Gbit/s to drive a 30 Gbit/s connection. 

Effective end-to-end data transfers thus demand a 

systems approach in which file systems, computers, 

network interfaces, and network protocols are managed 

in an integrated fashion to meet performance and 

robustness goals. Furthermore, unless such approaches 

are encapsulated in software that is both easily usable 

(by end users and higher-level tools) and portable 

across different end system and network architectures, 

they will not be widely used. 

These considerations motivate the work that we 

describe here, which concerns the design, 

implementation, and evaluation of a modular and 

extensible data transfer system architecture suitable for 

wide area and high-performance environments. This 

Globus striped GridFTP framework implements the 

GridFTP extensions [7] to the File Transfer Protocol 

(FTP) [45], which provide support for striped transfers 

from multiple data sources, failure detection, and other 

features. Both the framework and a high-performance 

striped server constructed within the framework form 

part of the Globus Toolkit [23] version 4 (GT4), and 

leverage Globus components for security and I/O 

functions.  

The Globus GridFTP framework has a modular 

structure that allows for the coordination of multiple 

data streams, the substitution of alternative transport 

protocols, and other desirable features. These features 
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allow us to achieve a high fraction of end-to-end 

bandwidth over both local and wide area networks. 

The rest of this paper is as follows. After discussing 

related work, we introduce in Section 3 the 

requirements that we seek to address, and in Section 4 

review the GridFTP protocol. In Section 5, we describe 

the design of our framework and server, and in Section 

6, we present experimental results. We conclude in 

Section 7. 

2 Related Work 

The efficient movement of distributed data is not a 

new problem. Parallel I/O systems commonly treat 

access to distributed data as a collective operation [49], 

and collective communication operations seek to 

optimize data transformations and transfers by 

coordinating related activities [35, 38]. In two-phase 

I/O [48] and in Remote I/O [25], data is read and then 

reorganized via interprocess communication prior to 

transfer. HPF/MPI [21] used the FALLS (FAmiLy of 

Line Segments) representation [47] to compute 

efficient inter-cluster communication schedules.  

Researchers have come up with numerous solutions 

to address limitations of TCP’s [44] AIMD-based 

congestion control mechanism [8]. These solutions 

include improvements to TCP [19, 33, 37], new 

transport protocols such as XCP [36], XTP [52] and 

reliable layers on top of UDP [5, 13, 14, 27, 30, 33, 

51]. Our system is designed to interface to such high-

performance communication protocols and to quality 

of service negotiation systems [22]. To date, our work 

has focused on the efficient use of TCP or other 

transport protocols on a per-stream basis. Our system 

could also manage all streams associated with a single 

transfer in a coordinated manner. 

The Distributed Parallel Storage System (DPSS) 

[34] is a dynamically configurable collection of widely 

distributed disk servers that operate in parallel to 

provide high-speed random access to large data sets. 

Beck et al.’s logistical networking [10] also enables 

wide distribution (and replication) of data. Our system 

can make use of such systems when single node or site 

performance is the bottleneck.  

Thain et al. [54] and Swany [53] describe data 

movement systems that make opportunistic use of 

disks in intermediate nodes to improve end-to-end 

performance. Our system can be used to transfer data 

between nodes in the end-to-end path. 

BitTorrent [15] and Slurpie [50] allow clients to 

upload pieces of a file from multiple sources when 

multiple people are downloading the same file at the 

same time. As our system supports striping and partial 

file transfer, it could be used to good effect as a data 

transfer tool in these systems. 

Distributed file systems [31, 43] can be used to 

enable access to remote data while maintaining file 

system semantics. The General Parallel File System 

(GPFS) [3] has achieved performance comparable to 

that of our system across wide area networks. 

GridFTP, and our system, are intended for use in less 

tightly coupled environments, in which file system 

semantics may be neither achievable nor desirable. 

The work of Weigle and Chien [57] is perhaps 

closest to ours in terms of goals and approach. They 

conceptualize the M-to-N communication problem in 

terms of sets of nodes termed composite endpoints. 

They define an API for defining sender and receiver 

data distributions within composite endpoints, and 

introduce and evaluate algorithms for computing 

efficient communication schedules. Their techniques 

can integrate naturally with GridFTP. 

3 Problem Statement 

We review the requirements that motivated our 

design. 

Striping. Continued commoditization of end system 

devices means that data sources and sinks are often 

clusters. Whether data is obtained from disk, sensors, 

or computation, the “end system” that drives a wide 

area link may involve many physical devices and 

considerable internal parallelism. This parallelism may 

also extend to the external network interface: a 

common configuration might have individual nodes 

connected by 1 Gbit/s Ethernet connections to a switch 

that is itself connected to the external network at 10 

Gbit/s or faster. Thus, we wish to support striped data 

movement operations, in which data distributed across, 

or generated by, a set of computers or storage systems 

at one end of a network is transferred to another remote 

set of storage systems or computers. 

Collective operations. While one can in principle 

express a data transfer between two clusters as a set of 

independent point-to-point transfers, it can be valuable 

to express such transfers as a single “collective” 

operation. Such an expression can permit a more 

concise description of the data transfer and provide a 

convenient logical unit for monitoring and 

management. Such an expression can also expose 

opportunities for optimization that might not be 

apparent in a set of point-to-point transfers. Thus, we 

wish to treat striped transfers as collective operations. 

Uniform interfaces. Data sources and sinks come in 

many shapes and sizes, and may include clusters with 

local disks, clusters with parallel file systems, archival 
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storage systems (with or without parallel data mover 

support), and geographically distributed data sources. 

We want to make it possible for clients to access such 

sources and sinks via a uniform interface. We also 

want to make it easy to adapt our system to support 

different sinks and sources. 

Network protocol issues. The standard protocol for 

network data transfer remains TCP. However, TCP’s 

congestion avoidance algorithm can lead to poor 

performance, particularly in default configurations and 

on paths with high round trip times. Solutions to this 

problem include careful (ideally automated) tuning of 

TCP parameters [18], TCP protocol improvements [19, 

33, 37], multiple “parallel” TCP connections [28, 46], 

and the substitution of alternative protocols [13, 14, 27, 

33]. We want to support such alternatives. 

End-to-end performance. Depending on context, 

high end-to-end performance can require the integrated 

management of many different devices, including 

storage systems, computers used to transform data, 

network interfaces, and network paths, and also 

perhaps other devices such as computers and storage 

systems located at intermediate points in a network. 

We would like to provide a framework within which a 

range of such end-to-end management approaches can 

be applied in a convenient manner. 

Diverse failure modes. Collective operations, striped 

transfers, and end-to-end management offer 

opportunities for enhanced performance, but also 

introduce new failure modes. Our design must address 

robustness and fault tolerance. 

4 GridFTP Protocol 

We adopt the GridFTP data transfer protocol, rather 

than alternatives such as WebDAV [56], for five 

reasons. First, the FTP protocol [45] on which 

GridFTP is based separates control and data channels, 

enabling third-party transfers, that is, the transfer of 

data between two end hosts, mediated by a third host. 

Second, FTP is a widely implemented and well-

understood IETF-standard protocol with a large base of 

code and expertise from which to build. Third, FTP 

provides a well-defined architecture for protocol 

extensions and supports dynamic discovery of the 

extensions supported by a particular implementation. 

Fourth, many extensions have been defined through the 

IETF, some of which are useful in the current context. 

Fifth, GridFTP adds new features that are relevant to 

our concerns.  

The following is a summary of key GridFTP 

features. 

Third-party control of data transfer. To manage 

large datasets for distributed communities, we must 

provide authenticated third-party control of data 

transfers between storage servers. A third-party 

operation allows a user or application at one site to 

initiate, monitor and control a data transfer operation 

between two other sites: the source and destination for 

the data transfer.  

Authentication, data integrity, data confidentiality. 

GridFTP supports Generic Security Services (GSS)-

API authentication of the control channel (RFC 2228) 

and data channel (GridFTP extensions), and supports 

user-controlled levels of data integrity and/or 

confidentiality. Data channel authentication is of 

particular importance in third party transfers since the 

IP address of the host connecting for the data channel 

will be different than that of the host connected on the 

control channel, and there must be some way to verify 

that it is the intended party.  

Striped data transfer. Data may be striped or 

interleaved across multiple servers, as in a parallel file 

system or DPSS disk cache [34]. Thus, GridFTP 

defines protocol extensions that support the transfer of 

data partitioned among multiple servers. 

Parallel data transfer. On wide-area links, using 

multiple TCP streams in parallel between a single 

source and destination can improve aggregate 

bandwidth relative to that achieved by a single stream 

[28, 46]. GridFTP supports such parallelism via FTP 

command extensions and data channel extensions. A 

GridFTP implementation can use long virtual round 

trip times to achieve fairness when using parallelism or 

striping [29]. Note that striping and parallelism may be 

used in tandem, i.e., you may have multiple TCP 

streams open between each of the multiple servers 

participating in a striped transfer. 

Partial file transfer. Some applications can benefit 

from transferring portions of files rather than complete 

files: for example, analyses that require access to 

subsets of massive object-oriented database files. FTP 

allows transfer of the remainder of a file starting at a 

specified offset. GridFTP supports requests for 

arbitrary file regions. 

Automatic negotiation of TCP buffer/window sizes. 

Using optimal settings for TCP buffer/window sizes 

can dramatically improve data transfer performance. 

However, manually setting TCP buffer/window sizes is 

an error-prone process (particularly for non-experts) 

and is often simply not done. GridFTP extends the FTP 

command set and data channel protocol to support both 

manual setting and automatic negotiation of TCP 

buffer sizes for large files and for large sets of small 
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files. Our system currently supports only manual 

setting of the TCP buffer size. 

Support for reliable and restartable data transfer. 

Reliable transfer is important for many applications 

that manage data. Fault recovery methods are needed 

to handle failures such as transient network and server 

outages. The FTP standard includes basic features for 

restarting failed transfers that are not widely 

implemented. GridFTP exploits these features and 

extends them to cover its new data channel protocol. 

5 Globus Striped GridFTP Design 

The Globus striped GridFTP system aims for (a) 

modularity, to facilitate the substitution of alternative 

mechanisms and use in different environments and 

configurations, and (b) efficiency, in particular the 

avoidance of data copies. As in systems such as the x-

Kernel [32], we achieve these goals via an architecture 

that allows a protocol processing pipeline to be 

constructed by composing independent modules 

responsible for different functions. 

Data Channel

Server PI

DTP

Description of transfer: completely 

server -internal communication. 

Protocol is unspecified and left up 

to the implementation.

Server PI

DTP

Internal IPC API Internal IPC API

Client PIInfo on transfer: restart 

markers, performance 

markers, etc. Server PI 

optionally processes 

these, then sends 

them to the client PI

Control

Channels

 
Figure 1: Globus GridFTP architecture 

The implementation (Figure 1) comprises three 

logically distinct components: client and server 

protocol interpreters (PIs), which handle the control 

channel protocol (these two functions are distinct 

because the protocol exchange is asymmetric), and the 

data transfer process (DTP), which handles the 

accessing of the actual data and its movement via the 

data channel protocol. These components can be 

combined in various ways to create servers with 

different capabilities. For example, combining the 

server PI and DTP components in one process creates a 

conventional FTP server, while a striped server might 

use one server PI on the head node of a cluster and a 

DTP on all other nodes. 

The DTP itself is further decomposed into a three-

module pipeline (Figure 2). The data access module 

provides an interface to data source(s) and/or sink(s). 

The data processing module performs server-side data 

processing, if requested by an extended store/retrieve 

(ESTO/ERET) command. Finally, the data channel 

protocol module reads from, and/or writes to, the data 

channel. This basic structure allows for a wide variety 

of systems, from simple file server logic (data access 

module reads/writes files, data processing module does 

nothing, data channel protocol module writers/reads 

the data channel) to more complex and specialized 

behaviors (e.g., data module generates data 

dynamically in response to user requests). 

Data 

Access 

Module

Data 

Processing 

Module

Data 

Channel 

Protocol 

Module

Data

source

or sink

Data 

channel

 
Figure 2: Globus GridFTP data transfer pipeline 

5.1 The Protocol Interpreter 

The server PI handles the control channel exchange. 

In order for a client to contact a GridFTP server, either 

the server PI must be running as a daemon and 

listening on a well known port (2811 for GridFTP), or 

some other service (such as inetd) must be listening on 

the port and be configured to invoke the server PI. The 

client PI then carries out its protocol exchange with the 

server PI. 

During the preparatory phase of the protocol 

exchange, the server PI is concerned simply with 

developing a description of the transfer that is to take 

place. No communication is necessary with the DTP at 

this point; indeed, the DTP need not even be running. 

When a command is received that requires DTP 

activity, the server PI passes it the description of the 

transfer (first starting it, if needed), after which the 

DTP can carry out the transfer on its own. Once the 

transfer request is passed, the server PI simply acts as a 

relay for transfer status information. For example, the 

server DTP may send performance markers, restart 

markers, etc., to the server PI, which optionally 

processes them, and then sends them to the client PI. 

PI-to-DTP communications are internal to the 

server, and thus this protocol used can evolve with no 

impact on the client. We used Message Passing 

Interface (MPI) [26] in an early prototype, which 

worked well but requires that MPI be installed. We 

currently use a binary protocol over TCP. 

The data channel communication structure is 

governed by data layout. In general, if the number of 

nodes at both ends is equal, each node communicates 
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with just one other node. Otherwise, each sender 

makes a connection to each receiver, and sends data to 

each receiver based on data offsets. 

5.2 DTP Data Access Module 

This module is responsible for reading from, and/or 

writing to, a data source or sink. Its public interface 

includes transfer operations (list, send, receive) and 

command operations (e.g., make/remove directory, 

rename, checksum). Different implementations of this 

interface can be provided. We provide one for POSIX-

accessible file systems and are working on one for the 

High Performance Storage System (HPSS). 

5.3 DTP Data Processing Module 

This module allows for (optional) server-side data 

processing, such as compression, scaling, or on-the-fly 

concatenation of multiple files. Normal (no server side 

processing) transfers are initiated with the STOR 

<filename>, for a put, or RETR <filename>, for a get. 

Data processing modules are invoked for puts and gets 

via the ESTO and ERET commands, respectively, 

which both take as arguments three strings: a module 

name, opaque module parameter, and filename. The 

module name is used to locate a loaded module in the 

module registry. The module is passed the parameter 

string and filename, and performs any necessary 

processing on the data as it transits the server. 

We currently implement data processing module 

functionality within the data access module. We plan to 

separate this functionality out as a separate module and 

to allow for chaining of multiple modules. 

5.4 DTP Data Channel Protocol Module 

This module handles data channel processing, i.e., 

the operations required to fetch data from, or send data 

to, the data channel. A single server may support 

multiple data channel protocols, in which case the 

MODE command is used to select the protocol to be 

used for a particular transfer. 

5.5 Security Considerations 

The Globus GridFTP design provides for secure 

authentication of control channel requests (obligatory) 

and for data channel integrity and confidentiality 

(optional). GSS-API Grid Security Infrastructure (GSI) 

[24] and Kerberos [41] authentication bindings are 

supported. Standard Kerberos does not support data 

channel authentication, but there exist “user to user” 

extensions to Kerberos that do. 

Security operations are performed via the GSS-API, 

for which Grid Security Infrastructure (GSI) [24] and 

Kerberos [41] authentication bindings are supported. 

We discuss GSI here. 

A session is established when the client initiates a 

TCP connection to the port on which the server is 

listening. The first thing that must happen is an 

authentication per RFC 2228. By default, the client 

presents a delegated proxy certificate [55], and the 

server must present a “host certificate” issued by a CA 

trusted by the client and with a DN ending with a 

common name  that is a direct match of that returned 

by a reverse DNS lookup of the server’s IP address. It 

is possible to specify a subject name other than the 

default, and this is in fact necessary if you run the 

server as a user, in which case the server presents that 

user’s subject name to the client. If authentication is 

not successful, the connection is dropped.  

If authentication is successful, an authorization 

callout is invoked to (a) verify authorization and (b) 

determine the local user id as which the request should 

be executed. This callout is linked dynamically; 

Globus GridFTP provides an implementation that 

supports both a Globus “gridmapfile” and Community 

Authorization Service [42] credentials, which may 

encode in SAML assertions the specific files that a user 

is authorized to read and/or write. Sites can also 

provide alternative implementations. Server does a 

setuid to the local user id as determined by the 

authorization callout. 

If authorization succeeds, the control channel has 

been established and the rest of the control channel 

protocol exchange can proceed. The control channel is 

encrypted and integrity protected by default. 

To establish the data channel (the connection over 

which the actual data of interest will flow), a listening 

port must be established and the other end informed of 

this port. The GridFTP protocol requires that the 

receiver be the listener and that the sender issue the 

TCP connect. Thus, the client sends a PASV command 

to the server that is to receive the data. The receiver 

begins listening on a TCP port and responds to the 

command indicating the IP address and Port of the 

listener. (If this is a striped transfer, the client sends a 

striped PASV, or SPAS, command and an array of 

IP/ports is returned.) The client then sends to the other 

server a PORT (or SPOR, for striped port) command, 

which takes the IP/ports as a parameter. This command 

directs the server to initiate the TCP connect, and 

establish the data channel. 

Third party transfer presents a security issue, as the 

receiving server starts listening on a port, but it has no 

way of knowing the IP address of the server that will 

connect to it. To mitigate this issue, we default to 
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requiring GSI authentication on the data channel as 

well. In this case, the server performs a delegation and 

both ends of the authentication must present the user’s 

subject name (no host certificate is involved). All the 

parties involved in the transfer must accept the same 

CA. 

Cryptographic confidentiality and integrity 

protection are both supported on the data channel, but 

are not enabled by default due to its cost (an order of 

magnitude is not unusual on high speed links). 

When the PI and DTP are run in separate processes, 

they communicate over an Interprocess 

Communication link. Establishment of this link is 

exactly as per the control channel, with the PI acting as 

the client (using the delegated credential) and the DTP 

presenting its host certificate. 

We have considered running the PI as a non-

privileged user by default. This would prevent an 

external connection from ever being connected to a 

root process. In that case, the host certificate should be 

owned by the user. The only objection to this approach 

is that some other services might require that the host 

certificate be owned by root. We are exploring other 

options that would allow the PI to be run as non-

privileged user. 

File system security is handled via normal operating 

system mechanisms. Once the process is running as an 

unprivileged user, it is subject to access control and 

quotas imposed by the operating system. 

6 Experimental Studies 

We perform experiments in three settings: a local 

area network (LAN) with a 0.2 milliseconds (msec) 

round trip time (RTT) and a bottleneck link of 612 

Mbit/s, a metropolitan area network (MAN) with 2.2 

msec RTT and a bottleneck link of 1 Gbit/s, and a wide 

area network (WAN) with a 60 msec RTT and a 

bottleneck link of 30 Gbit/s. The MAN is the 1 Gbit/s 

Distributed Optical Testbed (DOT) [2]. The WAN is 

the TeraGrid [12] link between NCSA in Illinois and 

SDSC in California, on which each individual host has 

a 1 Gbit/s bottleneck link. Hosts are either 1133 MHz 

or more dual Pentium processors with at least 512 

Mbyte memory and 1 Gbyte swap space, or (on 

TeraGrid) dual 1.3 Ghz Intel Itanium processors. 

In all tests, we set the TCP buffer size to 

(bandwidth-delay-product/number-of-streams). 

6.1 Comparison with Other FTP Servers 

We first compare our server with two popular FTP 

servers, WU-FTPD [6] and NCFTP [4], under identical 

conditions: no striping, parallelism, or authentication, 

and in stream mode. We used a block size of 64 Kbytes 

for disk IO. We present in Figures 3 and 4 performance 

when transferring a file of size 1, 10, 100, and 1000 

Mbytes, in our LAN and WAN. All data points are the 

means of 10 runs, with error bars also shown. We see 

that our server achieves superior performance in all 

cases, and does somewhat better relative to the other 

systems for larger files. It could be because of the 

efficient asynchronous event handling mechanism used 

in our implementation. 

 

Figure 3: Single-stream throughput on LAN 

 

 

Figure 4: Single-stream throughput on WAN 

6.2 Harnessing Parallelism 

We next look at the impact of multiple streams on 

total achieved performance. Figures 5-7 show 

performance achieved in LAN, MAN, and WAN 

settings as a function of the number of streams. We 

show data for four different cases: Iperf, memory-to-

memory Globus (/dev/zero to /dev/null), and disk-to-

disk Globus, each running on a single node, as a 

function of the number of streams used; and the 
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Bonnie file system benchmark [1] that first writes and 

then reads a 1 Gbyte file on one of the two computers 

used in our experiment. For the Iperf and Globus 

memory-to-memory, we ran the application for 60 

seconds. For the Globus disk-to-disk test, we transfer a 

1 Gbyte file. For Bonnie, we measured read 

performance at the sender and write performance at the 

receiver, and report the lower of the two values. 

 

Figure 5: Parallel throughput on LAN 

Figure 6: Parallel throughput on MAN 

 

Figure 7: Parallel throughput on WAN  

In the LAN case, Globus memory-to-memory 

performance matches that of Iperf, reaching 92% of 

bottleneck bandwidth; Globus disk-to-disk 

performance tracks that of Bonnie. Up to five streams 

seem to make a difference in all cases, after which little 

additional benefit is gained. In the WAN disk-to-disk 

case, we see somewhat more degradation of 

performance with increased streams. We attribute this 

result to more ‘seek’ operations at the receiver when 

using more streams, due to blocks received out of order 

(Figure 8). 

 

 

Figure 8: Seek operations at receiver vs. number of 

streams when transferring a 3 Gbyte file 

6.3 Striping 

We tested striped data transfers in both memory-to-

memory and disk-to-disk modes. For disk-to-disk 

transfers, we used files of size 3*num_nodes Gbytes, 

except when using 64 nodes on each end, when we 

used (3/2)*num_nodes=96 Gbytes. Figure 9 shows 

memory-to-memory striped transfer performance. Note 

that with 32 nodes on each side, we achieved 26 Gbit/s 

over the 30 Gbit/s connection.  

 
Figure 9: Globus mem-to-mem WAN performance 
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We have noted in numerous experiments that at 

lower speeds, increased streams did not equate to 

increased performance, only as we approached the 

bottleneck link speed, did the number of streams begin 

to have an effect. Though we were unable to obtain 

packet loss data, we suspect that this is because we 

have few or no packet losses until we begin to 

“compete with ourselves” and overflow the router 

buffers. In general, parallel streams are more effective 

with higher RTTs and with higher packet loss, though 

if packet loss were to become extreme to the point that 

all streams were losing packets, we might lose the 

benefits of multiple streams. 

Figure 10 shows disk-to-disk striped transfer 

performance. We observe a significant reduction in 

performance compared to memory-to-memory 

transfers. To determine why, we ran Bonnie on 

multiple machines to measure the effect of multiple 

simultaneous operations on file system performance. 

Both NCSA and SDSC run GPFS [3]. NCSA has two 

GPFS scratch file systems, GPFS NSD and high 

performance GPFS SAN; in all experiments presented 

here, we used fast I/O machines connected to the SAN. 

Figure 11 shows the impact of multiple simultaneous 

operations on disk throughput. Our earlier experiments 

transferred data from SDSC to NCSA, and thus it is 

SDSC read performance and NCSA write performance 

that are relevant. It seems that SDSC read performance 

is currently the major obstacle to higher performance 

disk-to-disk transfers. 

 

 

Figure 10: Globus disk-to-disk WAN performance 

6.4 Scalability 

Our final experiments evaluate Globus GridFTP 

performance as a function of the number of clients. We 

use the DiPerf test framework [17] to deploy clients on 

multiple servers and to collect performance data. The 

server, located in Los Angeles, was a 2-processor 1125 

MHz x86 machine running Linux 2.6.8.1 with Web100 

patches, 1.5 GB memory and 2 GB swap space, 1 

Gbit/s Ethernet network connection and 1500 B 

network MTU. The clients were created on hosts 

distributed over PlanetLab [9] and at the University of 

Chicago (UofC). PlanetLab machines are generally 

connected by 10 Mbit/s Ethernet, and the UofC 

machines by 100 Mbit/s Ethernet 

 

 

Figure 11: Parallel disk performance 
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Figure 12: Scalability results with 1800 clients 

Figure 12 shows results obtained with 1800 clients 

mapped in a round robin fashion on 100 PlanetLab 

hosts and 30 UofC hosts. A new client is created once 

a second. Each client runs for 2400 seconds and during 

this time repeatedly requests the transfer of a 10 Mbyte 

file from the server’s disk to the client’s /dev/null. A 

total of 150.7 Gbytes are transferred in 15,428 

transfers. The left axis in Figure 12 indicates load 

(number of concurrent clients), response time (secs), 

and memory allocated (Mbytes), while the right axis 

denotes both throughput (Mbyte/s) and server CPU 

y%. The dots in the figure represent individual client 
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response times, while each of the lines represents a 60-

second running average. Many other interesting 

characteristics are apparent in this figure, but are 

beyond the scope of this paper.  

These results are encouraging. The server sustained 

1800 concurrent requests with just 70% CPU and 0.94 

Mbyte memory per request. Furthermore, CPU usage, 

throughput, and response time remain reasonable even 

when allocated memory exceeds physical memory, 

meaning that paging is occurring. Total throughput 

reaches 25 Mbyte/s with less than 100 clients and 

exceeds 40 Mbyte/s with around 600 clients. 

7 Discussion 

We have described a new open source 

implementation of the GridFTP protocol. In designing 

this system, we set out to create a robust, performant, 

and modular data transfer framework for use in a 

variety of data-intensive tools and applications. The 

resulting Globus GridFTP system integrates a variety 

of techniques, including a modular protocol processing 

pipeline and parallel I/O, to meet its design goals in a 

way that no other system has done before. Our system 

also provides support for IPv6. 

We have tested our system thoroughly, as have early 

adopters. Performance is excellent in all situations 

studied, comparing favorably with that of other FTP 

servers for single-stream transfers and doing far better 

when striping is used. Performance with other network 

protocols, data transforms, and storage systems 

remains to be studied. 

Our system’s modular structure has allowed its use 

in many different contexts. We give four examples. 

The “TeraGrid Copy” (tgcp) program automatically 

selects appropriate parallelism and window size 

parameters to maximize performance on the TeraGrid 

network. The GT4 GRAM execution management 

service [16] uses our mechanisms for data staging and 

streaming. The NeST storage appliance [11] and the 

Earth System Grid’s OPeNDAP-G system [20] use our 

libraries for data transport.  

We have many ideas for further research and 

development. As indicated earlier, successful 

completion of an end-to-end transfer may involve 

intermediate staging of data products [39], negotiation 

with firewalls, use of alternative network protocols, 

and/or reservation of network or storage resources. 

Some such functions may appropriately be placed 

within, or require support from, our libraries. We also 

hope to exploit emerging Web services specifications 

to define more powerful and standards-based control 

interfaces, and to implement proposed GridFTP 

protocol improvements [40]. 
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